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Abstract: Climate change-induced elevated temperatures and drought are considered to be serious 

threats to forest ecosystems worldwide, negatively affecting tree growth and viability. We studied 

nine European beech (Fagus sylvatica L.) provenances located in two provenance trial plots with 

contrasting climates in Central Europe. Stomata play a vital role in the water balance of plants by 

regulating gaseous exchanges between plants and the atmosphere. Therefore, to explain the possible 

adaptation and acclimation of provenances to climate conditions, stomatal (stomatal density, the 

length of guard cells, and the potential conductance index) and leaf morphological traits (leaf size, 

leaf dry weight and specific leaf area) were assessed. The phenotypic plasticity index was calculated 

from the variability of provenances’ stomatal and leaf traits between the provenance plots. We 

assessed the impact of various climatic characteristics and derived indices (e.g., ecodistance) on 

intraspecific differences in stomatal and leaf traits. Provenances transferred to drier and warmer 

conditions acclimated through a decrease in stomatal density, the length of guard cells, potential 

conductance index, leaf size and leaf dry weight. The reduction in stomatal density and the potential 

conductance index was proportional to the degree of aridity difference between the climate of origin 

and conditions of the new site. Moreover, we found that the climate heterogeneity and latitude of 

the original provenance sites influence the phenotypic plasticity of provenances. Provenances from 

lower latitudes and less heterogeneous climates showed higher values of phenotypic plasticity. 

Furthermore, we observed a positive correlation between phenotypic plasticity and mortality in the 

arid plot but not in the more humid plot. Based on these impacts of the climate on stomatal and leaf 

traits of transferred provenances, we can improve the predictions of provenance reactions for future 

scenarios of global climate change. 

Keywords: acclimation; adaptation; common garden; drought; ecodistance; mortality; phenotypic 

plasticity; stomatal frequency; stomatal size 

 

1. Introduction 

European beech forests may be seriously affected by climate change-induced drought due to 

their well-known vulnerability to water shortages [1,2]. Combinations of heat and drought stress may 
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cause a decrease in the vitality and competitive ability of beech populations [3–5]. There have been 

reports of beech populations facing strong selective pressures [6], which are foreseen to become more 

intense due to upcoming alterations in rainfall patterns and temperatures with ongoing climate 

change [7,8]. To mitigate these negative effects on the future performance of beech forests in 

afforestation programs in Europe, there has been increased interest in research on the intraspecific 

variation in beech responses to environmental changes [9–11]. 

Large intraspecific differences in morphological and physiological traits among the beech 

provenances of distinct origin reflect possible strategies which are expected to modify their response 

to drought. Beech populations show divergent water use strategies reflected in the differences of 

photosynthetic performance, water-use efficiency, leaf water potential, xylem embolism resistance 

and leaf morphology [10–13]. The intraspecific variation in tolerance of water deficit follows a pattern 

shaped by both regional and local scale effects. Beech populations originating from the sites with low 

precipitation [14–16], lower altitude [17] or marginal distribution range [9,18,19] show higher 

drought resistance in comparison with the populations from more humid environments. The 

observed functional variation between beech populations reaffirms the importance of local 

adaptation to water deficit in the context of climate change [13,20]. 

Common garden experiments allow us to assess the relative importance of adaptation to the site 

of origin and acclimation to the new environment in the expression of phenotypic traits, as all 

provenances are exposed to the same conditions in provenance trial plots [21]. As a result of 

adaptation to local original conditions, the performance and vitality of populations show a 

correlation with ecological characteristics at the site of origin, even after their transfer to a new 

environment. The effect of environmental change on a provenance planted at a given location can be 

expressed as the difference between the ecological characteristics of the trial plot and the site of 

provenance origin, called the ecodistance [22]. Moreover, if we study the performance of populations 

in different provenance trial plots and the differences between plots are greater than within, we 

expect that the differences between phenotypes are driven more by acclimation to current 

environmental conditions than by local adaptation [23,24]. Stomatal and leaf morphological traits 

such as stomatal density, potential conductance index and specific leaf area affect stomatal 

conductance and transpiration (functional traits) which in return influence performance, growth and 

survival [13,19]. Therefore, stomatal and leaf morphological traits represent a viable means to identify 

populations suitable for a specific environment. 

The populations that possess stomatal and leaf morphological traits adapted to drought and heat 

stress will have an evolutionary advantage under future scenarios [3]. Hence, a plant strategy to cope 

with differences in water regimes involves altering stomatal density and stomatal size [25–27]. Some 

studies have shown that smaller stomata close more quickly than larger stomata do, thus indicating 

that this could enhance plant adaptation to drought [28]. However, there remains the debated issue 

of how stomatal density varies within a particular environment. It has been reported that drought 

resistant plants show higher stomatal density [27,29,30], but the results of more recent studies 

performed in controlled environments suggest that lower stomatal density improves drought 

tolerance [31,32]. Other functional traits frequently utilized in ecological studies and linked to 

drought tolerance are specific leaf area and leaf size. Several studies have revealed that changes in 

environmental factors such as light, temperature or nutrients strongly influence leaf traits [33,34]. 

Species with smaller, thicker leaves mainly occur in more stressful habitats and exhibit lower specific 

leaf areas. This trait is related to the species water use strategy [34], and it is highly plastic [35], 

although the precise physiological regulation mechanism of specific leaf area is still uncertain [33,36]. 

Furthermore, the phenotypic plasticity, defined as the capacity for a genotype to alter its 

morphology and/or physiology under altered environmental conditions [37], can play a major role in 

the survival and sustainability of forest populations subjected to global change [38–40]. This is 

generally seen as favourable under stress conditions because it enables plants to react to fluctuations 

in the environment [41,42]. However, several studies have reported a potential trade-off between 

phenotypic plasticity and individual fitness [43], suggesting reduced performance with increasing 

plasticity [38,44,45]. Therefore, it is crucial to assess the ability for stomatal and leaf morphological 
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traits to react plastically to their environment and to test the connection between their phenotypic 

plasticity and plant fitness and performance. 

We investigated stomatal and leaf morphological traits, their phenotypic plasticity and a link to 

the climate of origin and current climate in nine European beech provenances located in two 

provenance trial plots with contrasting climates (warmer and drier/colder and more humid) in 

Central Europe. Based on the premise that environmental differences between provenance trial plots 

can alter the stomatal and leaf morphological traits of European beech, we hypothesized that (i) 

provenances that grow in drier and warmer provenance plots will exhibit lower values of measured 

traits than those growing in more humid and colder plots to increase their performance under 

suboptimal conditions. We further expected to find that (ii) the climate of the provenance’s original 

site would affect the provenance’s phenotype even 18 years after transfer to a different environment. 

In addition to the relationship between the climate of origin and phenotype itself, we also 

hypothesized that (iii) the provenance climate of origin should affect the phenotypic plasticity of 

provenances, where provenances from more heterogeneous environments show higher phenotypic 

plasticity. Finally, we hypothesized (iv) a negative relationship between phenotypic plasticity and 

tree mortality, and provenances with higher value of plasticity would acclimate better under different 

environments, thus mitigating the risk of mortality. 

2. Materials and Methods 

2.1. Locality Description and Plant Material 

The material used for this experiment was collected from two European beech (Fagus sylvatica 

L.) provenance trial plots: Tále in the Slovak Republic (near Zvolen, 48°38′N, 19°02′E, 810 m a.s.l.) and 

Zbraslav in the Czech Republic (near Prague, 49°57′N, 14°22′E, 360 m a.s.l.). The Slovak provenance 

plot included loam soil with good nutrient availability and high water holding capacity, while the 

Czech provenance plot included sandy loam soil with poor nutrient availability and average water 

holding capacity [12]. Climate data for the original provenance sites were obtained from the 

WorldClim high-resolution climate database [46]. The climate characteristics of the Czech 

provenance plot were obtained from the Praha-Libuš meteorological station, and freely available data 

were provided by the Czech Hydrometeorological Institute (http://portal.chmi.cz). Climate data for 

the Slovak provenance plot were obtained from the nearby Kremnické Bane meteorological station 

monitored by the Slovak Hydrometeorological Institute. We calculated additional indices from the 

above climate data: 

Ellenberg quotient (EQ) [47] 

�� = 1000 ×  
��

����
 (1) 

Th—mean temperature of the hottest month (here July), Prec—annual sum of precipitation. 

Forest Aridity Index (FAI) [48] 

��� = 100 ×  
����

������� + �������

 (2) 

T7–8—mean temperature of July and August, Prec5–7—precipitation sum for May to July, Prec7–8—

precipitation sum for July to August. 

Isothermality (IsoT) 

���� =
� ×  (�� − ��)

���� − ����

 ×  100 (3) 

T—annual mean temperature, Th—mean temperature of warmest month, Tc—mean temperature of 

coldest month, TMAX—max temperature of warmest month, TMIN—min temperature of coldest month. 

Precipitation seasonality (SeasPrec) 
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σPrec—annual standard deviation of precipitation, Prec—annual sum of precipitation. 

All geographical and climatic data are presented in Table 1. Optimal hydric conditions of 

European beech stands are represented by EQ values of below 20. European beech starts to lose its 

competitive performance in environments with EQs of above 20 and is replaced by more xerotic tree 

species in places with EQs of above 30 [49,50]. Moreover, locations with optimal rainfall patterns 

during the vegetation season for European beech are defined by an FAI of under 4.75 [48,51]. The EQ 

for the Czech provenance plot is 33.5, and the FAI is 5.1, which characterizes the plot as a location 

with marginal environmental conditions for European beech occurrence. The Slovak provenance plot 

with an EQ of 19.1 and FAI of 2.5 represents the optimal hydric environment according to the 

classifications mentioned above. Both provenance plots were established in 1998 as a part of the 

European provenance plot network, whereas proven ances were planted as two-year-old seedlings 

[52]. Both plots were planted with 2 × 1 m spacing under a randomized block design with three blocks 

and fifty seedlings per block. Nine provenances were chosen for the analysis to capture the whole 

altitude range of the distribution of European beech (Figure 1). The distribution of provenance 

original sites regarding climate characteristics is visualized in Figure A1 of the Appendix. We were 

not able to sample some of the provenances in multiple blocks due to high spatial mortality. The third 

block of the Czech provenance plot completely died off, and some of the provenances remained only 

in one block. Similarly, the third block of the Slovak provenance plot suffered high mortality, and we 

avoided this to minimize sample heterogeneity due to unknown factors. 

Table 1. Geographic and climate characteristics of provenance plots and their original locations. 

Provenance Long Lat Alt T T59 Prec Prec59 EQ FAI IsoT Seasprec 

FR04 2.58 44.15 850 10.8 16.8 804 344 23.8 5.4 3.8 14 

LUX12 6.2 49.67 400 8.6 14.9 866 365 19.7 4.8 3.1 11 

UK17 −3.42 57.67 10 8.2 12.7 671 303 21.8 5.3 3.6 19 

SWE23 13.2 55.57 40 7.9 14.3 640 286 25.9 6.2 2.6 21 

GER26 10.67 53.65 55 8.3 15 678 319 25.5 5.1 3.0 17 

AU35 14.1 47.72 1250 2.4 9.2 1495 779 7.6 1.3 3.2 26 

AU36 14.85 47.53 1100 2.9 9.9 1168 648 10.4 1.6 3.1 32 

PL43 22.82 49.25 900 6.3 14.1 762 433 21.5 2.9 2.7 35 

PL67 18.17 54.33 250 5.8 13.2 633 336 24.6 4.3 2.4 30 

CZ Zbraslav 14.37 49.95 360 8.25 15.6 532 330 33.5 5.1 na na 

SK Tále 19.03 48.63 850 6.58 14.1 842 441 19.1 2.5 na na 

Long—longitude, Lat—latitude, Alt—altitude, T—annual average temperature, T59—average 

temperature during the vegetation season, Prec—sum of annual precipitation, Prec59—sum of 

precipitation during the vegetation season, EQ—Ellenberg quotient, FAI—Forest Aridity Index, IsoT—

isothermality, Seasprec—precipitation seasonality, na—not available. 



Forests 2020, 11, 1359 5 of 22 

 

 

Figure 1. Localities of the tested provenances (dots) and provenance plots (squares). 

2.2. Stomatal and Leaf Morphological Traits 

The samples were taken during June 2016 from full sun-exposed leaves located in the upper 

third of the crown to minimize irradiation and canopy position effects on stomatal and leaf 

morphology development [53,54]. We sampled six individuals per provenance per plot and made 

two imprints per individual. The imprints were made by the application of transparent nail polish to 

the abaxial side of the leaves [55]. The layer of polish was then transferred to a microscope slide with 

transparent tape. To avoid possible variations in stomatal distribution within the leaves, we took 

imprints between the second and third veins from the base of the leaves [17]. Six images were taken 

from each imprint using a Motic BA210 microscope with an integrated camera (Motic Electric, Linz, 

Austria). Three of these images were captured at 40 × 10 magnification, and three photos were 

captured at 10 × 10 magnification. The images at 10 × 10 magnification were used to assess stomatal 

density (SD). The number of stomata was calculated within a 750 × 750 µm square per image with a 

random position using ImageJ 1.51k software (National Institute of Health, Bethesda, MD, USA). The 

assessed value of the number of stomata per square was converted to the number per square 

millimetre. The length of guard cells (LA) was measured for ten stomata in a 40 × 10 magnification 

image using ImageJ software. The SD and LA values were then averaged per individual for further 

analysis. Additional leaves from the same branch were scanned with a HP Scanjet G4010 scanner 

(Hewlett Packard, California, USA), and the leaf size (Sleaf) was subsequently measured by ImageJ 

software. The scanned leaves were stored in silica gel, after which the leaves were dried at 75 °C to a 

constant weight (approximately 48 h). Afterwards, the dry weight (mleaf) was assessed. From the 

measured parameters, we calculated the following traits: 

The potential conductance index (PCI), an integrative variable of stomatal density and the length 

of guard cells, which can be used as a proxy for the theoretical maximal stomatal water vapour 

conductance [56,57]: 

��� = ��
�  ×  �� ×  10�� (5) 

LA—length of guard cells, SD—stomatal density. 

Specific leaf area (SLA), a parameter that corresponds to the thickness and density of leaf lamina [58,59]: 

��� =
�����

�����

 (6) 

Sleaf—leaf size and mleaf—dry weight of leaves. 
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2.3. Quantification of Phenotypic Plasticity 

The plasticity index based on maximum and minimum means (PIv) was calculated for each trait 

and provenance, respectively [37]. 

��� =
�̅��� − �̅���

�̅���

 (7) 

�̅���—maximum mean (mean of the group showing the maximal value relative to that of other groups); 

�̅���—minimum mean (mean of the group showing the minimal value relative to that of other groups). 

In our case, the groups refer to identical provenances from two different provenance plots. 

2.4. Statistical Analysis 

Statistical analysis was performed using R statistical software (Version 4.0.3, R Core Team, 

Vienna, Austria). Original climate characteristics of provenances were analysed by principal 

component analysis to visualize likeness or disparity between the original sites of the provenances. 

The normal distribution of the obtained data was first tested by the Shapiro–Wilk test. A two-way 

analysis of variance was used where provenance and plots were set as factors with fixed effects. 

Moreover, differences between provenances were tested separately for each plot by Fisher’s LSD post 

hoc test. We used ecodistance to capture shifts between the climate of origin and the climate of the 

provenance plot. The ecodistance was defined as the difference between the investigated ecologically 

relevant variables at the test site and at the population origin [22,60]. Furthermore, mixed models in 

the R “nlme” package [61] were used to explore relationships between individual stomatal and leaf 

morphological traits (dependent variables) and various explanatory variables, such as EQ, FAI, 

latitude and longitude. To account for between-plot variability, we included plot as a random effect 

variable, and the between-plot variance in the intercept estimation was quantified. We were not able 

to include a block design in the mixed models, as there were missing data due to spatial mortality 

within the plots. We used maximum likelihood to estimate the parameters of the model. To estimate 

the importance of individual explanatory variables, we calculated the normalized model likelihoods 

(Akaike weights). First, we fitted all possible model variants, including the null model (including 

only the intercept) and full model (including all explanatory variables). Then, Akaike weights were 

calculated for each model based on the corrected Akaike information criterion using the “Weights” 

function in the “MuMIn” R package [62]. The models with the highest weights were further selected 

and interpreted. In addition to that, we calculated marginal R² (R2m) and conditional R2 (R2c) for better 

comparison of fixed and random factors in model [63]. Statistical significance of differences between 

the plasticity of the traits was assessed by analysis of variance and Tukey’s post-hoc test. The 

relationships between original climate, phenotypic plasticity and tree mortality were tested by linear 

regression. 

3. Results 

3.1. Stomatal and Leaf Morphological Traits 

The effects of the tested factors, provenance, plot and provenance-by-plot interactions were 

statistically significant for all traits except in the case of specific leaf area (SLA) (Table 2, Table A1 in 

Appendix A). Provenances growing in a warmer and drier site in the Czech Republic showed lower 

guard cell length (LA, Figure 2A), stomatal density (SD, Figure 2B), potential conductance index (PCI, 

Figure 2C), leaf dry weight (mleaf, Figure 2D) and leaf size (Sleaf, Figure 2E) values than the provenances 

in the colder and more humid Slovak plot. Provenances in the Czech provenance plot showed an 

average 57% reduction in the PCI for leaves that were 12% smaller than those in the Slovak 

provenance plot. Based on the average mleaf, the provenances in the drier Czech plot accumulated 39% 

less biomass per leaf than the provenances in the more humid Slovak plot. Values of SLA were higher 

on average for the drier provenance plot, but changes were inconsistent and insignificant between 

provenances (Figure 2F). 
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Table 2. Results of two-way ANOVAs for each stomatal and leaf morphological trait. 

Factor Df Trait LA SD PCI mleaf Sleaf SLA 

Provenance 1 
F 57.95 17.65 11.59 3.79 10.83 0.69 

p *** *** *** ** *** 0.64 

Plot 8 
F 1771.5 457.4 1221.25 31.35 21.58 9.48 

p *** *** *** *** *** ** 

Provenance × Plot 8 
F 18.09 4.642 7.66 2.72 3.92 1.64 

p *** *** *** * *** 0.13 

LA—length of guard cells, SD—stomatal density, PCI—potential conductance index, Sleaf—leaf size, 

mleaf—dry weight per leaf, SLA—specific leaf area, significance levels *** <0.001 ** <0.01 * <0.05. 

3.2. Impact of Climate Ecodistance on Stomatal and Leaf Morphological Traits 

The multifactorial approach based on mixed models showed that the models with singular 

explanatory variables performed better than those with multiple factors; thus, a further analysis 

employed simple linear regression models (Tables A2 and A3). The degree of aridity and temperature 

differences between provenances’ origins and new plots (ecodistance) had a significant effect on 

provenances’ stomatal development (Figure 3). The ecodistance of the Ellenberg quotient (EQED) and 

forest aridity index (FAIED) had a significant negative influence on SD (Figure 3A,B) and the PCI 

(Figure 3C,D). Provenances transferred to a drier environment relative to their original site showed 

a proportionally lower density of stomata with lower potential conductance. The ecodistance of 

average temperature (TED) and average temperature during the vegetation season (T59ED) also had a 

significant negative influence on SD, and provenances transferred to a climate warmer than that of 

their original site showed a proportional decrease in SD (Figure 3E,F). Other climate ecodistance 

indices showed no significant correlations with stomatal and leaf morphological traits. 
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Figure 2. Mean values and standard errors of stomatal and leaf morphological traits per provenance: 

length of guard cell (LA, (A)), stomatal density (SD, (B)), potential conductance index (PCI, (C)), leaf 

size (Sleaf, (D)), leaf dry weight (mleaf, (E)) and specific leaf area (SLA, (F)). The red colour represents 

provenances growing in the Czech provenance plot, and the blue colour represents provenances 

growing in the Slovak provenance plot. The dashed horizontal line represents the average per plot 

with the surrounding standard error interval band. Provenances are arranged based on the Ellenberg 

quotient of the original site (blue to red x axis band). 
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Figure 3. Linear regression results showing the relationship between ecodistance (EQED, FAIED, TED, 

T59 ED) and stomatal morphological traits, stomatal density (SD, (A,B,E,F)) and the potential 

conductance index (PCI, (C,D)). Positive values on the horizontal axis represent transfer to a 

drier/hotter environment (red arrow), and negative values represent transfer to a more humid/colder 

environment (blue arrow). 
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3.3. Phenotypic Plasticity of Stomatal and Leaf Morphological Traits 

To quantify the acclimation response, we calculated the phenotypic plasticity index for each trait 

and provenance. Plasticity indices of the potential conductance index (PCIPI), leaf dry weight (mleaf PI) 

and specific leaf area (SLAPI) showed the highest values of plasticity among the provenances. In 

contrast, the plasticity index of the length of guard cells (LA PI) was the lowest among the provenances 

(Figure 4). The climate of the original provenance locations affected the plasticity response of 

acclimation after transfer to a new environment. Provenances from locations with more 

heterogeneous environmental temperatures showed lower PCIPI and LA PI plasticity. We found a 

positive relationship between the isothermality (IsoT) of the original location and provenances PCIPI 

and LA PI (Figure 5A,C). Moreover, provenances from environments with more heterogeneous 

precipitation distributions showed lower plasticity of LA. The seasonality of precipitation (SeasPrec) at 

the original locations of the provenances negatively influenced the LA PI of the provenances (Figure 

5D). Furthermore, the original latitude (Lat) affected the PCIPI, as provenances from lower latitudes 

showed a higher PCIPI (Figure 5B). We found a significant negative relationship between provenance 

mortality and the plasticity of stomatal and leaf morphological traits (PCIPI and SLAPI) in the drier 

and hotter Czech provenance plot (Figure 6) but no significant relationship between mortality and 

plasticity in the more humid Slovak provenance plot. 

 

Figure 4. Phenotypic plasticity indices of stomatal density (SDPI), guard cell length (LA PI), the potential 

conductance index (PCIPI), leaf size (Sleaf PI), leaf dry weight (mleaf PI) and specific leaf area (SLAPI) for 

each provenance. Plasticity indices obtain values of 0 to 1, where 0 denotes no plasticity and 1 denotes 

theoretical maximal plasticity. Confidence intervals represent standard error and the capital letters 

correspond to results of post-hoc analysis. 
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Figure 5. Linear regression results showing the relationship between isothermality (IsoT, (A,C)), 

latitude (Lat, (B)) and precipitation seasonality (SeasPrec, (D)) of the provenance’s original site and 

plasticity indices (LA PI, PCIPI). 

 

Figure 6. Visualization of the relationship between plasticity indices (PCIPI, (A); SLAPI, (B)) and the 

observed mortality of provenances in the Czech (red) and Slovak (blue) provenance plot. The linear 

regression was significant only for drier Czech provenance plot. 
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4. Discussion 

4.1. Functional Aspects of the Adaptive Response 

Our study demonstrates that European beech provenances adjusted their stomatal and leaf 

morphological traits in response to being transferred to a new environment. Provenances exhibited 

significantly lower SD, LA, PCI, Sleaf and mleaf levels in the drier Czech provenance plot than in the more 

humid Slovak provenance plot. There were no significant differences in SLA when we considered 

provenance–plot interactions. Lack of significant differences regarding SLA might be caused by low 

sample size and high variability of the trait. Nevertheless, we observed that provenances in more 

xeric plot showed higher overall SLA. This is in opposition to general consensus [13,36,64,65], but has 

already been observed in some studies [66,67]. The adjustment of stomatal and leaf development can 

be seen as an adaptive response to either suboptimal climatic conditions of the Czech plot or to 

favourable climatic conditions of the Slovak plot. It has been reported that plants might improve their 

drought tolerance and water use efficiency (WUE) by reducing SD [31,32,68] and LA [28,69]. Both 

herbaceous plants and trees react to episodic drought and long-term xericity of the environment by 

decreasing SD [25,70] and developing smaller stomata with lower LA [26,56,71–73]. Combined 

stomatal morphology (LA) and the distribution of stomata on leaves (SD), represented as the PCI, 

might be seen as a proxy for structural constraints of maximal stomatal conductance. A reduction in 

the PCI under xeric conditions should then ultimately reduce stomatal conductance [74] and water 

loss, which can lead to improved WUE [73,75]. Acclimation through the development of smaller 

leaves (Sleaf) under xeric conditions leads to less water loss through transpiration [76] and higher WUE 

[77,78]. It should be mentioned that WUE is also influenced by photosynthetic capacity and not just 

stomata related traits [13]. Plants exposed to water deficit show a reduction in mleaf [64,79]. The 

combination of lower Sleaf with mleaf in drier site might be explained by trees’ strategy to invest more 

in root biomass with the cost of lower leaf biomass and leaf size [80]. The above-mentioned traits, 

therefore, represent plants’ adaptive mechanisms in mitigating drought stress [81]. As these stomatal 

and leaf morphological traits have a significant impact on plant performance under water stress, their 

adjustment is vital for plants to successfully acclimate under changing conditions due to either 

anthropogenic transport to new environments or accelerating global climate change. 

On the other hand, an increase in SD and LA can enhance photosynthetic capacity [82,83], which 

could enhance tree performance under optimal climatic conditions where the strongest selective 

pressure is competition [84]. Leaves with higher SD and larger stomata (LA) show an increase in 

maximal stomatal conductance [85–87], which leads to higher biomass accumulation and growth [88]. 

A higher PCI increases the maximal limit of stomatal conductance, which might improve 

photosynthetic capacity [89]. Moreover, the PCI has also been found to be related to leaf hydraulic 

conductance [57], which has been correlated with photosynthesis rates across plant species [89,90]. 

Higher Sleaf values under favourable conditions lead to higher photosynthesis rates [91,92], which 

positively affect leaf biomass production with higher mleaf values [93]. According to our results, 

provenances in the drier and hotter Czech plot might acclimatise to their environment by 

undertaking a water conservation strategy with decreasing SD, LA, PCI, Sleaf and mleaf values. 

Conversely, provenances growing on the more humid Slovak plot could utilize the development of 

larger leaves (Sleaf, mleaf) with higher SD, LA and PCI values to maximize photosynthetic activity and 

growth in a competitive environment. Despite the clear theoretical basis for why the provenances 

showed significantly different values of the tested traits, we did not find any significant relationship 

between the tested traits and mortality. To address our first hypothesis (i), we found the 

morphological response as expected, but there is no evidence that the alternation of stomatal and leaf 

morphological traits had a significant positive effect on provenance performance. To capture the 

drought resistance profile of provenances for practical application, we suggest analysing additional 

physiological and functional traits, such as WUE, cuticular conductance, xylem embolism resistance 

and the turgor loss point [10,13,94]. Stomatal and leaf morphological traits alone are not satisfactory 

to define which provenances would be favourable for hotter and more xeric conditions in the near 

future. 
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4.2. Climate Ecodistance as an Effective tool for Provenance Research 

We found that the SD and PCI of provenances depend on the aridity ecodistance (EQED and 

FAIED) and temperature ecodistance (TED and T59ED). The ecodistance represents the climatic shift 

between the original provenance site and the provenance plot to which it is transferred. The 

connection between both the climate of origin and the current climate and stomatal phenotype might 

suggest strong coordination between genetic and environmental impacts on stomatal development. 

A previous provenance study showed strong significant relationships between temperature and 

ecodistance and the phenology, morphology and dendrometric traits of European beech provenances 

[22]. Aridity ecodistance (EQ) has been found to be a significant explanatory variable for the vitality 

[95] and growth [96] of European beech provenances. A study of four temperate tree species (Fagus 

sylvatica, Picea abies (L.) Karst., Pinus sylvestris L. and Quercus petraea (Matt.) Liebl.) has also shown a 

significant relationship between aridity ecodistance (the annual aridity index) and the growth of 

provenances after transfer to a new environment [97]. Our second hypothesis (ii) is confirmed by a 

significant relationship between SD, the PCI and ecodistance, which incorporates the climate of origin 

as well as the current climate of new plots. The ecodistance has not attracted much popularity since 

its first formulation [22], but it seems that this simple mathematical formulation of climate transfer 

could capture the physiological, morphological and growth reactions of tree provenances to their 

new environments. More studies have focused on additional tree species, and other aspects of tree 

phenotyping are needed to test whether ecodistance is robust enough to be useful and reliable for 

forestry applications. The ecodistance could then be used not only to explain the effect of climatic 

shifts caused by the spatial transfer of provenances but also to predict provenance reactions to 

temporal changes caused by accelerating anthropogenic global climate change. 

4.3. Phenotypic Plasticity 

Populations with higher phenotypic plasticity can adapt to higher environmental variability and 

thus can minimize the risk of mortality [65,98,99]. Our results suggest that the PCI, mleaf and SLA are 

the most plastic, while LA is the least plastic trait among provenances. The low plasticity of LA might 

suggest higher genetic control of stomatal size relative to the other tested traits. Similar results of low 

plasticity for LA and high plasticity for the PCI and leaf morphology were also observed in beech 

provenance studies [71,95]. Furthermore, we found a significant relationship between climate 

heterogeneity of the original site (IsoT and SeasPrec) and the plasticity of LA and PCI (LA PI and PCIPI). 

We expected populations that had evolved under more heterogeneous environments to favour higher 

phenotypic plasticity to quickly adjust their phenotype if needed [11,37,99,100]. In contrast to what 

we expected, the provenances from the most heterogeneous environment showed the lowest LA PI and 

PCIPI values, so hypothesis (iii) cannot be confirmed. We also found a negative significant relationship 

between latitude and PCIPI, which might be attributable to a reduction in genetic diversity from lower 

to higher latitudes after the recolonization of habitats after the last glacial maximum [101–103]. A 

harsher northern environment or higher competition at the distribution edge may create more 

selection pressure than elsewhere in the distribution range [44]. Therefore, populations that evolved 

under strong selection pressure might favour more efficient strong genetic control over high 

phenotypic plasticity within the population [104]. This could lead to trait canalization which might 

be translated to lower phenotypic plasticity [105–107]. 

We found a significant positive relationship between PCIPI, SLAPI and mortality values, but only 

in the drier and hotter Czech provenance plots. However, in this study with phenotyping data from 

only the remaining trees, we cannot conclude that the high plasticity of these two traits causes high 

provenance mortality as the plasticity was calculated from surviving individuals and thus might be 

biased. Higher mortality, which created more open canopies and less competition among the 

remaining trees, might have caused the higher values of phenotypic plasticity, as trees reacted to 

newly available canopy space. High phenotypic plasticity is generally seen as a favourable property 

of plants, trees or populations under global climate change [37,108,109]. We cannot confirm our 

hypothesis that (iv) there is a negative relationship between phenotypic plasticity and tree mortality. 

Despite this, we find it important to discuss phenotypic plasticity. Both recent and earlier studies 
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have shown that the high phenotypic plasticity of plants should not be universally seen as a positive 

attribute [43,45,110,111]. The plasticity cost might not be pronounced under normal conditions, but 

when plants are exposed to a highly stressful environment, the plasticity cost might outweigh the 

fitness gain [112,113]. The results of several studies suggest reduced performance with increasing 

phenotypic plasticity under stress [38,44]. Thus, phenotypic plasticity, measured by common metrics 

[37], should not be automatically interpreted as beneficial for plants under global climate change. The 

high phenotypic plasticity of populations exposed to severe environmental stress might be associated 

with increased mortality and reduced fitness. 

5. Conclusions 

European beech provenances have shown a high degree of both adaptation and acclimation after 

transfer to a new environment. The observed differences in stomatal morphological traits were linked 

to the long-term aridity and air temperature of both the original site and the current provenance plot. 

The heterogeneity of the original site’s climate and latitude affected the phenotypic plasticity of 

stomatal traits. Higher phenotypic plasticity was associated with higher mortality under suboptimal 

conditions but not under favourable hydric conditions. Additional functional and physiological traits 

should be considered to evaluate the resistance or performance of European beech provenances, as 

we have not found any direct link between mortality and the tested stomatal and leaf morphological 

traits. Ecodistance can be considered as an easy to use and robust tool for analysing adaptive 

responses of tree provenances under global climate change. Studies of phenotypic plasticity should 

not interpret the positive effects of high plasticity without taking into consideration the performance, 

fitness or vitality of plants. 
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Appendix A 

Table A1. Results of Fisher LSD post-hoc test. 

SK LA SD PCI Sleaf mleaf SLA 

FR04 BC AC AB B A AB 

LUX12 AB B A AB ABC BC 

UK17 AB AB AB AB AB ABC 

SWE23 AB C B AB ABCD A 

GER26 A ABC AB A ABC C 

AU35 A ABC AB AB BCD A 

AU36 AB ABC AB A D AB 

PL43 AB AB A AB A BC 

PL67 C AC A A CD AB 

CZ LA SD PCI Sleaf mleaf SLA 

FR04 C ABCD AB B D A 

LUX12 C AB B AB ACD A 

UK17 AB ABCD ACD A ABC A 

SWE23 AB D CD A B A 

GER26 B CD D A AB A 

AU35 AB ABC AC A AB A 

AU36 AB A AB A ABC A 

PL43 AC BCD ACD AB ABCD A 

PL67 AC ABCD AB AB CD A 

SD—stomatal density, LA—length of guard cells, PCI—potential conductance index, SLA—specific 

leaf area, Sleaf—leaf size, EQED—Ellenberg quotient ecodistance, FAIED—Forest Aridity Index 

ecodistance, LongED—longitude ecodistance, LatED—latitude ecodistance. 

Table A2. AICc based variable weights of mixed models. Green to red spectrum represents the 

explanatory power of individual parameters and their combinations. Full model consists of all three 

parameters: aridity (expressed as the EQ and FAI), longitude and latitude. 

Trait EQED LongED LatED EQED+LongED EQED+LatED LongED+LatED Full Model 

SD 0.704 0.014 0.007 0.125 0.131 0.002 0.016 

LA 0.222 0.31 0.168 0.202 0.031 0.047 0.021 

PCI 0.211 0.461 0.151 0.065 0.032 0.073 0.007 

SLA 0.312 0.239 0.292 0.044 0.06 0.046 0.006 

Sleaf 0.16 0.472 0.152 0.069 0.031 0.102 0.014 

 FAIED LongED LatED FAIED + LongED FAIED + LatED LongED + LatED Full model 

SD 0.263 0.056 0.029 0.046 0.532 0.009 0.065 

LA 0.286 0.284 0.154 0.163 0.049 0.043 0.021 

PCI 0.177 0.482 0.158 0.068 0.031 0.076 0.008 

SLA 0.316 0.241 0.296 0.047 0.048 0.047 0.005 

Sleaf 0.149 0.345 0.111 0.273 0.021 0.075 0.027 

SD—stomatal density, LA—length of guard cells, PCI—potential conductance index, SLA—specific 

leaf area, Sleaf—leaf size, EQED—Ellenberg quotient ecodistance, FAIED—Forest Aridity Index 

ecodistance, LongED—longitude ecodistance, LatED—latitude ecodistance. 
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Table A3. Values of the marginal and conditional R2 of mixed models presented in Table A2. 

 SD LA PCI SLA Sleaf 
 R2m R2c R2m R2c R2m R2c R2m R2c R2m R2c 

EQED 0.38 0.76 0.03 0.87 0.01 0.89 0.04 0.86 0.02 0.38 

LongED 0.01 0.84 0.02 0.78 0.01 0.91 0.01 0.75 0.12 0.18 

LatED 0.00 0.84 0.00 0.78 0.00 0.91 0.01 0.77 0.03 0.22 

EQED + LongED 0.38 0.75 0.07 0.92 0.01 0.91 0.04 0.86 0.19 0.75 

EQED + LatED 0.37 0.77 0.03 0.86 0.01 0.88 0.04 0.86 0.05 0.40 

LongED + LatED 0.02 0.84 0.02 0.78 0.01 0.91 0.02 0.77 0.15 0.29 

Full model 0.37 0.76 0.07 0.91 0.01 0.91 0.04 0.86 0.21 0.77 
 SD LA PCI SLA Sleaf 
 R2m R2c R2m R2c R2m R2c R2m R2c R2m R2c 

FAIED 0.06 0.82 0.02 0.83 0.00 0.90 0.02 0.80 0.09 0.43 

LongED 0.01 0.84 0.02 0.78 0.01 0.91 0.01 0.75 0.12 0.18 

LatED 0.00 0.84 0.00 0.78 0.00 0.91 0.01 0.77 0.03 0.22 

FAIED + LongED 0.06 0.82 0.04 0.85 0.01 0.91 0.02 0.79 0.23 0.58 

FAIED + LatED 0.11 0.86 0.02 0.83 0.00 0.90 0.02 0.79 0.09 0.40 

LongED + LatED 0.02 0.84 0.02 0.78 0.01 0.91 0.02 0.77 0.15 0.29 

Full model 0.11 0.86 0.05 0.85 0.01 0.90 0.02 0.78 0.23 0.56 

 

Figure A1. The principal component analysis biplot of provenance’s original climate. 
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